Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(6): 2741-2760, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767833

RESUMO

Human enterprise has led to large-scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid-1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage-grouse' distribution, where a remnant population remains despite recent development of energy-related infrastructure. Resource managers in this region have determined a need to augment sage-grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio-marked sage-grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long-term recovery.

2.
Ecol Evol ; 10(20): 11169-11182, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144957

RESUMO

The "green wave" hypothesis posits that during spring consumers track spatial gradients in emergent vegetation and associated foraging opportunities. This idea has largely been invoked to explain animal migration patterns, yet the general phenomenon underlies trends in vertebrate reproductive chronology as well. We evaluated the utility of this hypothesis for predicting spatial variation in nest initiation of greater sage-grouse (Centrocerus urophasianus), a species of conservation concern in western North America. We used the Normalized Difference Vegetation Index (NDVI) to map the green wave across elevation and then compiled dates and locations of >450 sage-grouse nests from 20 study sites (2000-2014) to model nest initiation as a function of the start of the growing season (SOS), defined here as the maximum daily rate of increase in NDVI. Individual sites were drawn from three ecoregions, distributed over 4.5° latitude, and spanning 2,300 m in elevation, which captured the climatic, edaphic, and floristic diversity of sagebrush ecosystems in the southern half of current sage-grouse range. As predicted, SOS displayed a significant, positive relationship with elevation, occurring 1.3 days later for each 100 m increase in elevation. In turn, sage-grouse nest initiation followed SOS by 22 ± 10 days (r2  = .57), with hatch dates falling on or just prior to the peak of the growing season. By timing nesting to the green wave, sage-grouse chicks hatched when the abundance of protein-rich invertebrate biomass is hypothesized to be nearing a seasonal high. This adaptation likely represents a strategy for maximizing reproductive success in the arid, variable environments that define sagebrush ecosystems. Given projected changes in climate and land use, these results can be used to predict periods of relative sensitivity to habitat disturbance for sage-grouse. Moreover, the near real-time availability of satellite imagery offers a heretofore underutilized means of mapping the green wave, planning habitat restoration, and monitoring range conditions.

4.
PLoS One ; 14(1): e0209968, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699130

RESUMO

Anthropogenic infrastructure can negatively affect wildlife through direct mortality and/or displacement behaviors. Some tetranoids (grouse spp.) species are particularly vulnerable to tall anthropogenic structures because they evolved in ecosystems void of vertical structures. In western North America, electric power transmission and distribution lines (power lines) occur in sagebrush (Artemisia spp.) landscapes within the range of the greater sage-grouse (Centrocercus urophasianus; sage-grouse). The U.S. Fish and Wildlife Service recommended using buffer zones near leks to mitigate the potential impacts of power lines on sage-grouse. However, recommended buffer distances are inconsistent across state and federal agencies because data are lacking. To address this, we evaluated the effects of power lines on sage-grouse breeding ecology within Utah, portions of southeastern Idaho, and southwestern Wyoming from 1998-2013. Overall, power lines negatively affected lek trends up to a distance of 2.7 and 2.8 km, respectively. Power lines died not affect lek persistence. Female sage-grouse avoided transmission lines during the nesting and brooding seasons at distances up to 1.1 and 0.8 km, respectively. Nest and brood success were negatively affected by transmission lines up to distances of 2.6 and 1.1 km, respectively. Distribution lines did not appear to affect sage-grouse habitat selection or reproductive fitness. Our analyses demonstrated the value of sagebrush cover in mitigating potential power line impacts. Managers can minimize the effects of new transmission power lines by placing them in existing anthropogenic corridors and/or incorporating buffers at least 2.8 km from active leks. Given the uncertainty we observed in our analyses regarding sage-grouse response to distribution lines coupled with their role in providing electric power service directly to individual consumers, we recommend that buffers for these power lines be considered on a case-by-case basis. Micrositing to avoid important habitats and habitat reclamation may reduce the potential impacts of new power line construction.


Assuntos
Animais Selvagens/fisiologia , Conservação dos Recursos Naturais , Fontes de Energia Elétrica/efeitos adversos , Eletricidade/efeitos adversos , Galliformes/fisiologia , Animais , Cruzamento , Conservação dos Recursos Naturais/métodos , Ecossistema , Instalação Elétrica/efeitos adversos , Idaho , Comportamento de Nidação , Dinâmica Populacional , Utah , Wyoming
5.
Ecol Evol ; 7(19): 7620-7627, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043019

RESUMO

Livestock grazing affects over 60% of the world's agricultural lands and can influence rangeland ecosystem services and the quantity and quality of wildlife habitat, resulting in changes in biodiversity. Concomitantly, livestock grazing has the potential to be detrimental to some wildlife species while benefiting other rangeland organisms. Many imperiled grouse species require rangeland landscapes that exhibit diverse vegetation structure and composition to complete their life cycle. However, because of declining populations and reduced distributions, grouse are increasingly becoming a worldwide conservation concern. Grouse, as a suite of upland gamebirds, are often considered an umbrella species for other wildlife and thus used as indicators of rangeland health. With a projected increase in demand for livestock products, better information will be required to mitigate the anthropogenic effects of livestock grazing on rangeland biodiversity. To address this need, we completed a data-driven and systematic review of the peer-reviewed literature to determine the current knowledge of the effects of livestock grazing on grouse populations (i.e., chick production and population indices) worldwide. Our meta-analysis revealed an overall negative effect of livestock grazing on grouse populations. Perhaps more importantly, we identified an information void regarding the effects of livestock grazing on the majority of grouse species. Additionally, the reported indirect effects of livestock grazing on grouse species were inconclusive and more reflective of differences in the experimental design of the available studies. Future studies designed to evaluate the direct and indirect effects of livestock grazing on wildlife should document (i) livestock type, (ii) timing and frequency of grazing, (iii) duration, and (iv) stocking rate. Much of this information was lacking in the available published studies we reviewed, but is essential when making comparisons between different livestock grazing management practices and their potential impacts on rangeland biodiversity.

6.
Glob Chang Biol ; 23(5): 1832-1846, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27633847

RESUMO

Two fundamental issues in ecology are understanding what influences the distribution and abundance of organisms through space and time. While it is well established that broad-scale patterns of abiotic and biotic conditions affect organisms' distributions and population fluctuations, discrete events may be important drivers of space use, survival, and persistence. These discrete extreme climatic events can constrain populations and space use at fine scales beyond that which is typically measured in ecological studies. Recently, a growing body of literature has identified thermal stress as a potential mechanism in determining space use and survival. We sought to determine how ambient temperature at fine temporal scales affected survival and space use for a ground-nesting quail species (Colinus virginianus; northern bobwhite). We modeled space use across an ambient temperature gradient (ranging from -20 to 38 °C) through a maxent algorithm. We also used Andersen-Gill proportional hazard models to assess the influence of ambient temperature-related variables on survival through time. Estimated available useable space ranged from 18.6% to 57.1% of the landscape depending on ambient temperature. The lowest and highest ambient temperature categories (<-15 °C and >35 °C, respectively) were associated with the least amount of estimated useable space (18.6% and 24.6%, respectively). Range overlap analysis indicated dissimilarity in areas where Colinus virginianus were restricted during times of thermal extremes (range overlap = 0.38). This suggests that habitat under a given condition is not necessarily a habitat under alternative conditions. Further, we found survival was most influenced by weekly minimum ambient temperatures. Our results demonstrate that ecological constraints can occur along a thermal gradient and that understanding the effects of these discrete events and how they change over time may be more important to conservation of organisms than are average and broad-scale conditions as typically measured in ecological studies.


Assuntos
Aves , Comportamento de Nidação , Animais , Ecossistema , Dinâmica Populacional , Temperatura
7.
PLoS One ; 10(8): e0137021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317349

RESUMO

The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003-2011) of Greater Prairie-Chicken (Tympanuchus cupido) lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS) layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (<0.18) and high area under the curve scores (AUC >0.81), indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures). Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern.


Assuntos
Comportamento Animal , Conservação dos Recursos Naturais , Galliformes , Animais , Feminino , Masculino , Modelos Estatísticos , Recursos Naturais , Probabilidade
8.
PLoS One ; 8(6): e65582, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824519

RESUMO

Effective long-term wildlife conservation planning for a species must be guided by information about population vital rates at multiple scales. Greater sage-grouse (Centrocercus urophasianus) populations declined substantially during the twentieth century, largely as a result of habitat loss and fragmentation. In addition to the importance of conserving large tracts of suitable habitat, successful conservation of this species will require detailed information about factors affecting vital rates at both the population and range-wide scales. Research has shown that sage-grouse population growth rates are particularly sensitive to hen and chick survival rates. While considerable information on hen survival exists, there is limited information about chick survival at the population level, and currently there are no published reports of factors affecting chick survival across large spatial and temporal scales. We analyzed greater sage-grouse chick survival rates from 2 geographically distinct populations across 9 years. The effects of 3 groups of related landscape-scale covariates (climate, drought, and phenology of vegetation greenness) were evaluated. Models with phenological change in greenness (NDVI) performed poorly, possibly due to highly variable production of forbs and grasses being masked by sagebrush canopy. The top drought model resulted in substantial improvement in model fit relative to the base model and indicated that chick survival was negatively associated with winter drought. Our overall top model included effects of chick age, hen age, minimum temperature in May, and precipitation in July. Our results provide important insights into the possible effects of climate variability on sage-grouse chick survival.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Galliformes/fisiologia , Animais , Clima , Secas , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...